
www.manaraa.com

Fundamentals of Web
Programminga

Introduction to XML

Teodor Rus

rus@cs.uiowa.edu

The University of Iowa, Department of Computer Science

a
Copyright 2009 Teodor Rus. These slides have been developed by Teodor Rus using material published by R.W. Sebesta, Programming the World Wide Web, Addison

Wesley 2009. They are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form or modified form without the

express written permission of the copyright holder. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial

firm without the express written permission of the copyright holder.

Introduction System Software. Copyright Teodor Rus – p.1/51

www.manaraa.com

Markup-Languages
A meta-markup language is a mechanism used
to define markup languages.
Example: The Standard Generalized Markup Language (SGML) is a
meta-markup language standardized by ISO in 1986.

• In 1990 SGML was used for the development of the HTML as a
standard markup language for Web documents;

• In 1996 the World Wide Web Consortium (W3C) used SGML to
develop a simpler meta-markup language, namely The eXtensible
Markup Language (XML);

• The first XML standard, XML 1.0, was published in February 1998;

• The second XML standard, XML 1.1, was published in 2004.
However, only XML 1.0 is used in these notes.

Introduction System Software. Copyright Teodor Rus – p.2/51

www.manaraa.com

Rationale for XML
Part of the motivation for XML development was
the deficiencies of the HTML.
Problems: HTML defines a collection of tags and attributes to be used
to describe the layout on information in Web documents.

• Using HTML one can describe the layout of information without
considering its meaning;

• HTML lacks a formal syntax and consequently HTML documents
cannot be easily validated.

Introduction System Software. Copyright Teodor Rus – p.3/51

www.manaraa.com

Potential Solutions
1. Define a specific set of tags and attributes for each group of users

with common document needs and then use SGML standard to
define a new markup language to meet those needs.
Hence, each application area would have its own markup
language.

Feasibility: although having a domain specific markup language is
a good idea, complexity of SGML makes it difficult to implement it.

2. Define a simplified version of SGML and allow users to develop
their own markup languages.

Feasibility: XML was designed to implement this goal. In this
context users are organizations with common data description
processing needs.

Introduction System Software. Copyright Teodor Rus – p.4/51

www.manaraa.com

Observation
If we replace the goal of data description with the

goal of problem solving then we obtain the idea of

developing a markup language used to describe

a domain specific problem solving process.

Introduction System Software. Copyright Teodor Rus – p.5/51

www.manaraa.com

Facts
1. XML was not designed as a replacement of HTML. XML was

designed as a tool to be used for the design of markup languages.
XHTML is one of its first applications.

2. XML provide a simple and universal way of storing textual data.
Data stored in XML documents can be electronically distributed
and processed by any number of different applications.

3. XML is a universal data interchange language.
XML documents represent data not processes.

4. XML is not a markup language, XML is a meta-markup language
that specify rules for creating markup language. Consequently
XML includes no tags. XML user must uses tags specific to her
application domain.

Introduction System Software. Copyright Teodor Rus – p.6/51

www.manaraa.com

XML Applications
A markup language designed with XML is called
an XML application.

XML Tag Set: to avoid confusion, an XML-based
markup language is called a tag set;

XML Document: a document that use an XML-

based markup language is called an XML docu-

ment.

Introduction System Software. Copyright Teodor Rus – p.7/51

www.manaraa.com

XML Tools
• XML documents can be written by hand using simple text editors

or by dedicated programs.

• Browsers have default presentation styles for every XHTML
elements. However, one cannot expect a browser to have default
presentation styles for elements it has never seen.

Consequence: XML documents can be displayed by browsers only
if presentation rules are provided by style sheets.

Introduction System Software. Copyright Teodor Rus – p.8/51

www.manaraa.com

XML Processors
• An XML processor parses XML documents, decompose them into

components (such as tags, attributes, data strings) and provide
them to applications.

• XML documents are plain text, which are readable by both people
and machines, although there is no compelling reason for people
to read XML documents.

• Currently majority of Web clients use such browsers as IE6, IE7,
FX, FX2 which support basic XML.

Introduction System Software. Copyright Teodor Rus – p.9/51

www.manaraa.com

Syntax of XML
The syntax of XML is defined at two levels:

1. General low-level syntax that imposes rules on all XML
documents, independent of their tag set;

2. Application dedicated syntax defined by the collection of tags,
attributes, and entities available for XML documents.

Note: application dedicated syntax is defined by
either Document Type Definition (DTD) or XML
schema.

Introduction System Software. Copyright Teodor Rus – p.10/51

www.manaraa.com

General Rules
An XML document is a sequence of well-nested
XML elements.

• An XML element is specified as string that has the following
structure:

<tag attributes > Contents </tag>

where each attribute is a string of the form name = "value".

• An element is well-nested if its open and closing tag are not
interleaved with other tags.

Introduction System Software. Copyright Teodor Rus – p.11/51

www.manaraa.com

XML Document Format
1. An XML document begins with an XML declaration which

identifies the XML standard of the document. Example:

<?xml version = "1.0" encoding = "utf-8"?>

2. Each document has a single root element; all other elements of
the XML document must be well-nested in the document root.

3. XML elements are of two kind: content and no content element.
• An XML element that can have content has the structure"

<tag> Content </tag>

where the Content is a sequence of well-nested XML
elements.

• An XML element that has no content has the form
<element_name attributes />

Introduction System Software. Copyright Teodor Rus – p.12/51

www.manaraa.com

Example XML Document
<?xml version = "1.0" encoding = "utf-8"?>

<ad>

<year> 1979 </year>

<make> Cessna </make>

<model> Centurian </centurian>

<color> Yellow with white trim </color>

<location>

<city> Gulfport </city>

<state> Mississippi </state>

</location>

</ad>

Introduction System Software. Copyright Teodor Rus – p.13/51

www.manaraa.com

Document Development
The designer of an XML document is faced with:

• The choice between adding new attributes to a tag or defining a
nested element;

• No choice, as is the case when the data is an image and the
reference to it can only be an attribute because images are binary
data and XML document can contain only text;

• In other cases it may not matter whether an attribute or a nested
element is used;

• There are however situation where choices exist and one choice
is clearly better than another.

Introduction System Software. Copyright Teodor Rus – p.14/51

www.manaraa.com

Choices
• Nested tags versus attributes: if a document needs to grow in

structural complexity nested tags are better than attributes
because nested tags can be added to any existing tag to describe
its growing size and complexity;

• Nothing can be added to an attribute, hence attributes cannot
describe structure;

• To identify an element of a set by number or by name the
attributes id or number needs to be used;

• An attribute should be used when the data is a value among a
given set of possibilities;

• An attribute should be used if there is no substructure of the data
described by the XML element.

Introduction System Software. Copyright Teodor Rus – p.15/51

www.manaraa.com

Example XML Choices
<!-- A tag with one attribute -->

<patient name = "Maggie Dee Magpie">

. . .

</patient>

!-- A tag with one nested tag -->

<patient>

<name> Maggie Dee Magpie </name>

. . .

</patient>

<!-- A tag with multiple nested tags -->

<patient>

<name>

<firtst> Maggie </first>

<middle> Dee </middle>

<last> Magpie </last>

</name>

. . .

</patient>

Introduction System Software. Copyright Teodor Rus – p.16/51

www.manaraa.com

XML Document Structure
An XML document consists of one or more
entities which represent logically related
collections of information ranging in size from a
single character to a book chapter.

Document entity: is always physically included in the file that represent

the documents; it can be the entire document but it can also include

references to the names of entities that are stored elsewhere.

Introduction System Software. Copyright Teodor Rus – p.17/51

www.manaraa.com

XML Document Entities
Reasons for breaking an XML document into
multiple entities:

• A large document is easier to manage when it is split into multiple
entities;

• If the same data appears in more than one place in a document,
defining it as an entity allows any number of reference to a single
copy of that data, thus avoiding inconsistency among data
occurrences;

• Many documents include information that cannot be represented
as text, such as images, which is usually stored as binary data;

• If a binary data unit is a logical part of an XML document, it must
be separate because XML documents cannot include binary data.

Introduction System Software. Copyright Teodor Rus – p.18/51

www.manaraa.com

Entity Replacement
When an XML processor encounters the name of
a non-binary entity in an XML document, it
replaces that name with the value it references.

Note: Binary entities can be handled only by applications that deal with

the document, such as browsers. XML processors deal only with text.

Introduction System Software. Copyright Teodor Rus – p.19/51

www.manaraa.com

Entity Names
An entity name is a string which begins with a
letter, a dash, or a colon.

• The length of an entity name is unlimited;

• After first character the entity name can have letters, digits,
periods, dashes, underscores, or colons;

• A reference to an entity is the entity name prepended by
ampersand (&) and appended a semicolon.

Example: if apple image is the name of an entity then &apple image;

is a reference to that entity.

Introduction System Software. Copyright Teodor Rus – p.20/51

www.manaraa.com

Common Use of Entities
Entity usage allows characters that are normally used as markup
delimiters to appear as themselves in a document.

• XML Entities can be user defined (using DTDs); The following XML entities are
predefined for XHTML:

Character Entity Meaning

& & Ampersand

< < Less than

> > Greater than

" " Double quote

’ ' Single quote (apostrophe)
1

4
¼ One quarter

3

4
¾ Three quarters

1

2
½ One half

◦ ° Degree

(space) Nonbreaking space
Introduction System Software. Copyright Teodor Rus – p.21/51

www.manaraa.com

Character Data Section
When several predefined entities must appear
near each other in an XML document, their
references clutter the content making it difficult to
read. This is prevented by using character data
section instead.

Note: the content of a character data section is not parsed by the XML

parser, so any tags it may include are not recognized as tags. This

makes it possible to include special markup delimiter characters

without using their entity references.

Introduction System Software. Copyright Teodor Rus – p.22/51

www.manaraa.com

Data Section Specification
The form of a character data section is:
<![CDATA[contents]]>

Example: instead of
The last word of the line is >>> here <<<

one can use
<![CDATA[The last word of the line is >>> here <<<]]>

Introduction System Software. Copyright Teodor Rus – p.23/51

www.manaraa.com

Observations
1. The opening keyword of a character data section is

[CDATA[

2. Consequence is that there cannot be any space between the [

and the C or between A and the second [in [CDATA[.

3. The only thing that cannot appear in a character data section is
the closing delimiter]] >.

4. Because the content of a character data section is not parsed by
the XML parser, entity references included are not expanded.

Introduction System Software. Copyright Teodor Rus – p.24/51

www.manaraa.com

Document Type Definition
A DTD is a set of structural rules called
declarations that specify a set of elements,
attributes, and entities and how they can appear
in an XML document.
Note:

• Not all XML documents need a DTD;

• Use of DTD-s is related to the use of external style sheets to
impose a uniform style over a set of documents;

• DTD-s are used when the same tag set definition is used for a
collection of documents which must have a consistent and
uniform structure.

Introduction System Software. Copyright Teodor Rus – p.25/51

www.manaraa.com

Facts
1. A DTD can be internal or external the XML document whose

syntax it describes. An internal DTD is embedded in the XML
document while an external DTD is stored in a separate file;

2. External DTD-s describe collections of XML documents and avoid
two different notations (XML and DTD) from appearing in the
same document;

3. An XML document can be tested against its DTD to determine if it
conforms to the specification rules;

4. Application programs that process XML data can be written to
assume a particular document form;

Introduction System Software. Copyright Teodor Rus – p.26/51

www.manaraa.com

Reasons for External DTD
Correct DTD-s separately developed prevent
earlier errors in XML applications. Therefore:

• Fixing a DTD and all copies of it should be the first and simplest
step in an XML document development;

• After the correction of DTD is completed, all XML documents it
describes must be tested against it;

• Changes to the associated style sheets may be necessary during
DTD correction process.

Introduction System Software. Copyright Teodor Rus – p.27/51

www.manaraa.com

DTD Syntax
Syntactically, a DTD is a sequence of
declarations of the form:
<!keyword BNF rule >

where keyword is one of:
1. ELEMENT if the BNF rule describes the structure of an XML

element;

2. ATTLIST if the BNF rule defines a list of one or more tag
attributes used by the XML documents;

3. ENTITY if the BNF rule defines an entity used by the XML
documents;

4. NOTATION if the BNF rule defines data type notation.

Introduction System Software. Copyright Teodor Rus – p.28/51

www.manaraa.com

ELEMENT Declaration
Each element declaration in a DTD specifies the
structure of one category of elements used in
XML documents using the form
<!ELEMENT elementName (list of names of child elements) >

where:
• elementName is name of the element (the tag);

• list of names of child elements is the comma
separated sequence of element components.

Note: although an XML element is a string of characters its structure is

described by a tree whose root is the element tag, whose interior

nodes are element components, and whose leafs are strings of

characters.

Introduction System Software. Copyright Teodor Rus – p.29/51

www.manaraa.com

Example Element Declaration
• An XML element representing a memo may be declared by:

<!ELEMENT memo (from, to, date, re, body) >

• The tree structure of the element memo is in Figure 1

Introduction System Software. Copyright Teodor Rus – p.30/51

www.manaraa.com

Element Tree Representation

r

r r r r r

from to date re body

memo
������������9

�
�

�
�

�
�� ?

XXXXXXXXXXXXz

H
H

H
H

H
Hj

Figure 1: Example Element Tree Representation

Introduction System Software. Copyright Teodor Rus – p.31/51

www.manaraa.com

Facts
1. In many cases it is necessary to specify the number of times that

an element may appear. This can be done by using regular
operators as seen in the following table:

Operator Meaning

+ One or more occurrences

* Zero or more occurrences

? Zero or one occurrences

2. Example:

<!ELEMENT person (parent+, age, spouse?, siblings*) >

Here the person element is specified as having the children: one
or more parent elements, one age element, possible a spouse

element, and zero or more sibling elements.

Introduction System Software. Copyright Teodor Rus – p.32/51

www.manaraa.com

Data Type Specification
The leaf nodes of a DTD specify the data types
of the content of their parent nodes, which are
elements.
There are three kinds of data specified by the leaf elements of a DTD:

1. Parsable character data, which is a string of any printable
characters except <, >, and &, specified by

<!ELEMENT elementName (#PCDATA)>;

2. Empty content element, specified by

<!ELEMENT elementName (EMPTY)>

3. Unrestricted content element, which removes any syntax
checking:

<!ELEMENT elementName (ANY)>

Introduction System Software. Copyright Teodor Rus – p.33/51

www.manaraa.com

Attribute Declaration
The general form of an attribute declaration is:
<!ATTLIST elementName attributeName attributeType [defaultValue]>

If more than one attribute is declared for an
element the declaration is:
<!ATTLIST elementName

attributeName_1 attributeType [defaultValue_1]

attributeName_2 attributeType [defaultValue_2]

. . .

attributeName_n attributeType [defaultValue_n] >

Introduction System Software. Copyright Teodor Rus – p.34/51

www.manaraa.com

Attribute Types
The attributeType in an attribute declaration can
have the following values:

Value Meaning

CDATA The value is character data

(eval|eval|..) The value must be an enumerated value

ID The value is an unique id

IDREF The value is the id of another element

IDREFS The value is a list of other ids

NMTOKEN The value is a valid XML name

NMTOKENS The value is a list of valid XML names

ENTITY The value is an entity

ENTITIES The value is a list of entities

NOTATION The value is a name of a notation

xml: The value is predefined

Introduction System Software. Copyright Teodor Rus – p.35/51

www.manaraa.com

Default Value
The defaultValue in attribute declarations can be:

Value Meaning

#DEFAULT value The attribute has a default value

#REQUIRED The attribute value must be included in the element

#IMPLIED The attribute value does not have to be included

#FIXED value The attribute value is fixed and quoted

Introduction System Software. Copyright Teodor Rus – p.36/51

www.manaraa.com

Example Attribute Declarations
• An empty element with the attribute width of type CDATA.

<!ELEMENT square EMPTY>

<!ATTLIST square width CDATA "0">

XML example:

<square width="100" />

• Default attribute value

<!ATTLIST elementName attributeName CDATA "default-value">

DTD example:

<!ATTLIST payment type CDATA "check">

XML example:

<payment type = "check">

Note: specifying a default value for an attribute, assures that the
attribute will get a value even if the author of the XML document
didn’t include it.

Introduction System Software. Copyright Teodor Rus – p.37/51

www.manaraa.com

More Attribute Examples
• Implied attribute

<!ATTLIST elementName attributeName attributeType #IMPLIED>

DTD example:

<!ATTLIST contact fax CDATA #IMPLIED>

XML example:

<contact fax = "555-667788">

Note: an implied attribute is used when the author is not forced to
include an attribute and there is no option for a default value.

Introduction System Software. Copyright Teodor Rus – p.38/51

www.manaraa.com

More Attribute Examples
• Required attribute

<!ATTLIST elementName attributeName attributeType #REQUIRED>

DTD example:

<!ATTLIST person number CDATA #REQUIRED>

XML example:

<person number = "5677">

Note: Use a required attribute if you don’t have an option for a
default value, but still want to force the attribute to be present.

Introduction System Software. Copyright Teodor Rus – p.39/51

www.manaraa.com

More Attribute Examples
• Fixed attribute value

<!ATTLIST elemName attrNname attrTtype #FIXED "value">

DTD example:

<!ATTLIST sender company CDATA #FIXED "Microsoft">

XML example:

<sender company = "Microsoft">

Note: Use a fixed attribute value when you want an attribute to
have a fixed value without allowing the author to change it. If an
author includes another value, the XML parser will return an error.

Introduction System Software. Copyright Teodor Rus – p.40/51

www.manaraa.com

More Attribute Examples
• Enumerated attribute values

<!ATTLIST elementName attributeName (eval|eval|..) default-value>

DTD example:

<!ATTLIST payment type (check|cash) "cash">

XML example:

<payment type = "check">

<payment type = "cash">

Note: Use enumerated attribute values when you want the
attribute values to be one of a fixed set of legal values.

Introduction System Software. Copyright Teodor Rus – p.41/51

www.manaraa.com

Entity Declaration
Entities are defined in DTD and are referenced in
XML document. There are two kind of entities:

1. General entities: are entities that can be referenced anywhere in
an XML document and are defined by:

<!ENTITY entityName "entityValue">

Example:

<!ENTITY jfk "John Fitzgerald Kenedy">

2. Parametric entities: are entities that can be referenced only in
DTD-s and are defined by:

<!ENTITY % entityName "entityValue">

Introduction System Software. Copyright Teodor Rus – p.42/51

www.manaraa.com

Fact
1. When the entity value is longer than a few words, such as a

section of a technical article, the entity is defined outside of the
DTD and is called external entity.

2. The declaration of an external entity has the form:

<!ENTITY entityName SYSTEM "entityLocation">

The keyword SYSTEM tells that the entity definition is in a different
file whose location is specified by "entityLocation".

Introduction System Software. Copyright Teodor Rus – p.43/51

www.manaraa.com

Entity Reference
• Internal entity: DTD Example:

<!ENTITY writer "Donald Duck.">

<!ENTITY copyright "Copyright W3Schools.">

XML example:

<author> &writer; ©right;</author>

• External entity: DTD Example:

<!ENTITY writer SYSTEM "http://www.w3schools.com/entities.dtd">

<!ENTITY copyright SYSTEM "http://www.w3schools.com/entities.dtd">

XML example:

<author>&writer;©right;</author>

Introduction System Software. Copyright Teodor Rus – p.44/51

www.manaraa.com

NOTATION Declaration
The purpose of a notation declaration is to define the format of some
external non-XML file, such as a sound or image file, so you can refer
to such files in your document.
see http://www.google.com/, DTD NOTATION.

Observations: the general form of a notation declaration can be either of:
<!NOTATION nname PUBLIC std>

<!NOTATION nname SYSTEM url>

where

• name is the name given to the notation;

• std is the published name of a public notation;

• url is a reference to a program that can render a file in the given
notation.

Introduction System Software. Copyright Teodor Rus – p.45/51

www.manaraa.com

NOTATION Use
There are four steps to connecting an attribute to
a notation:

1. Declare the notation. For example:

<!NOTATION jpeg PUBLIC "JPG 1.0">

2. Declare the entity. For example:

<!ENTITY bogiePic SYSTEM "http://stars.com/bogart.jpg" NDATA jpg>

3. Declare the attribute as type ENTITY. For example:

<!ATTLIST star-bio pin-shot ENTITY #REQUIRED>

4. Use the attribute:

<star-bio pin-shot = "bogiePic"> ... </star-bio>

Introduction System Software. Copyright Teodor Rus – p.46/51

www.manaraa.com

A Sample DTD
<?xml version = "1.0" encoding = "utf-8" ?>

<!-- planes.dtd a DTD for planes.xml document -->

<!ELEMENT planes4Sale (ad+)>

<!ELEMENT ad (year, make, model, color, description, price?,

seller, location)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT make (#PCDATA)>

<!ELEMENT modesl (#PCDATA)>

<!ELEMENT color (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT seller (#PCDATA)>

<!ELEMENT location (city, state)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

Introduction System Software. Copyright Teodor Rus – p.47/51

www.manaraa.com

Sample DTD, Continuation
<!-- Attribute declarations -->

<!ATTLIST seller phone CDATA #REQUIRED>

<!ATTLIST seller email CDATA #IMPLIED>

<!ENTITY c "Cessna">

<!ENTITY p "Piper">

<!ENTITY b "Beechcraft">

Introduction System Software. Copyright Teodor Rus – p.48/51

www.manaraa.com

DTD Use
• An internal DTD is included in the XML file it describes using

declaration

<?xml version = "1.0" encoding = "utf-8" ?>

<!DOCTYPE rootName

[<!-- DTD -->]

<!-- XML file -->

• An external DTD is included in the XML file it describes using the
declaration:

<?xml version = "1.0" encoding = "utf-8" ?>

<!DOCTYPE XMLrootName SYSTEM "DTDfileNameLocation">

<!-- XML file -->

Introduction System Software. Copyright Teodor Rus – p.49/51

www.manaraa.com

Example DTD Use
<?xml version = "1.0" encoding = "utf-8">

<!DOCTYPE planes4Sale SYSTEM ExamplesDTD/planes4Sale.dtd>

<planes4Sale>

<ad>

<year> 1977 </year>

<mkae> &c </make>

<model> Skyhawk </model>

<color> Light blue with white </color>

<description> New paint, nearly new interior, 685 hours SMOH,

full IFK King avionics </description>

<price> 23,495 </price>

<seller phone = "555-222-3333"> Skyway Aircraft </seller>

<location>

<city> Rapid City, </city>

<state> South Dakota </state>

</location>

</ad>

Introduction System Software. Copyright Teodor Rus – p.50/51

www.manaraa.com

Example DTD, continuation
<ad>

<year> 1965 </year>

<make> &p </make>

<model> Cherokee </model>

<color> Gold </color>

<description> 240 hours SMOH, dual NAVCOMs, DME, new

breaks, great shape </description>

<seller phone = "555-333-22222" email = "jseller&www.axl.com">

John Seller

</seller>

<location>

<city> Cedar Rapids, </city>

<state> Iowa </state>

</location>

</ad>

</planes4Sale>

Introduction System Software. Copyright Teodor Rus – p.51/51

	Markup-Languages
	Rationale for XML
	Potential Solutions
	Observation
	Facts
	XML Applications
	XML Tools
	XML Processors
	Syntax of XML
	General Rules
	XML Document Format
	Example XML Document
	Document Development
	Choices
	Example XML Choices
	XML Document Structure
	XML Document Entities
	Entity Replacement
	Entity Names
	Common Use of Entities
	Character Data Section
	Data Section Specification
	Observations
	Document Type Definition
	Facts
	Reasons for External DTD
	DTD Syntax
	ELEMENT Declaration
	Example Element Declaration
	Element Tree Representation
	Facts
	Data Type Specification
	Attribute Declaration
	Attribute Types
	Default Value
	Example Attribute Declarations
	More Attribute Examples
	More Attribute Examples
	More Attribute Examples
	More Attribute Examples
	Entity Declaration
	Fact
	Entity Reference
	NOTATION Declaration
	NOTATION Use
	A Sample DTD
	Sample DTD, Continuation
	DTD Use
	Example DTD Use
	Example DTD, continuation

